e-XXXX-XXXX

=
=
1=
<
S
|
L0
=
o

Original Article

Analisis Keamanan Sistem Operasi Terhadap Rancangan Malware
Lokal

Eka Citra', Nurul Hikmah Bahriz*
123]nstitut Teknologi Bacharuddin Jusuf Habibie, Parepare, Indonesia,
Korespondensi Author: Ekacitra215@gmail.com,

nurulhikmahbahri.241031059@mahasiswa.ith.ac.id™

Abstrak:

Penelitian ini menganalisis ketahanan sistem operasi terhadap ancaman
malware lokal yang dirancang khusus untuk mengeksploitasi celah
konfigurasi sistem dan kelalaian pengguna. Menggunakan metode analisis
dinamis dalam lingkungan terisolasi (sandboxing), penelitian ini memantau
secara mendalam aktivitas persistensi, manipulasi registry, hingga teknik
injeksi proses berbahaya. Hasil penelitian mengungkapkan bahwa meskipun
fitur keamanan proaktif seperti proteksi kernel telah diimplementasikan,
malware lokal tetap mampu menginfeksi sistem melalui teknik penyamaran
(obfuscation) dan eksploitasi hak akses pengguna (privilege escalation).
Kesimpulan penelitian menekankan bahwa sinergi antara pembaruan
keamanan sistem dan penguatan kebijakan hak akses merupakan langkah
krusial dalam memitigasi ancaman malware secara efektif.

Keywords: Keamanan Sistem Operasi, Malware Lokal, Persistensi,
Sandboxing, Injeksi Proses.

Pendahuluan
Latar Belakang

Keamanan sistem operasi (SO) merupakan pilar utama dalam menjaga integritas,
kerahasiaan, dan ketersediaan data di era transformasi digital. Seiring dengan
meningkatnya kompleksitas arsitektur perangkat lunak, ancaman malware juga
mengalami evolusi yang signifikan. Secara khusus, malware lokal—yang dirancang
untuk menargetkan pengguna di wilayah atau ekosistem tertentu—sering kali memiliki
tingkat efektivitas yang tinggi bukan karena kecanggihan kodenya, melainkan karena
kemampuannya dalam mengeksploitasi aspek psikologis dan kelalaian konfigurasi
pengguna lokal.

Di Indonesia, fenomena penyebaran malware lokal masih didominasi oleh
pemanfaatan fitur-fitur dasar sistem operasi yang sering kali diabaikan tingkat

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 90

mailto:Ekacitra215@gmail.com
mailto:nurulhikmahbahri.241031059@mahasiswa.ith.ac.id

keamanannya. Penggunaan perangkat lunak bajakan, perilaku berbagi data melalui
media penyimpanan eksternal (USB flash drive) tanpa pemindaian, serta rendahnya
kesadaran terhadap User Account Control (UAC) menjadi celah utama. Malware lokal
modern tidak lagi sekadar merusak data, tetapi berfokus pada persistensi kemampuan
untuk tetap aktif di dalam sistem meskipun telah dilakukan proses pembersihan atau
reboot. Meskipun sistem operasi populer seperti Windows dan Linux telah
mengimplementasikan berbagai lapisan perlindungan proaktif seperti Address Space
Layout Randomization (ASLR), Data Execution Prevention (DEP), hingga Kernel-level
Protection rancangan malware lokal tetap mampu menembus pertahanan tersebut
melalui teknik obfuscation (penyamaran kode) dan process hollowing. Teknik-teknik ini
memungkinkan kode berbahaya berjalan di bawah identitas proses yang sah, sehingga
sulit dideteksi oleh antivirus tradisional yang berbasis signature.

Ketidakseimbangan antara kecepatan evolusi teknik serangan malware dengan
pemahaman pengguna mengenai penguatan (hardening) sistem operasi menciptakan
celah keamanan yang kritis. Analisis terhadap mekanisme internal bagaimana sistem
operasi merespons terhadap injeksi proses dan modifikasi registry oleh malware lokal
sangat diperlukan. Melalui penelitian ini, diharapkan dapat terpetakan titik-titik
kerentanan pada rancangan sistem operasi saat ini, sehingga dapat dirumuskan strategi
mitigasi yang lebih preventif dan adaptif terhadap ancaman siber yang bersifat lokal
namun destruktif.

=
=
L=
<
p—
<
=
&n
1=
o

Rumusan Masalah

1. Mekanisme Persistensi bagaimana malware lokal memanipulasi Registry atau
Startup sistem untuk tetap aktif secara otomatis?

2. Efektivitas Deteksi sejauh mana fitur keamanan bawaan (Defender/UAC) mampu
mendeteksi teknik penyamaran (obfuscation) malware lokal?

3. Injeksi Proses bagaimana efektivitas sistem operasi dalam mencegah malware
bersembunyi di dalam proses sistem yang sah?

4. Eksploitasi Hak Akses mengapa pengaturan hak akses pengguna (User Privilege)
masih menjadi titik lemah utama yang mudah ditembus?

Tujuan Penelitian
1. Menganalisis Teknik Persistensi mengidentifikasi cara malware lokal memodifikasi

konfigurasi sistem agar sulit dihapus.

2. Menguji Pertahanan Sistem mengevaluasi ketangguhan fitur keamanan bawaan
(seperti Real-time Protection dan Firewall) terhadap kode yang disamarkan.

3. Validasi Keamanan Memori mengamati respon sistem operasi saat terjadi upaya
injeksi kode ke dalam proses legal.

4. Rekomendasi Mitigasi merumuskan standar konfigurasi hak akses yang lebih aman
untuk meminimalisir dampak infeksi.

Manfaat Penelitian

1. Bagi Praktisi IT sebagai acuan dalam memperkuat pertahanan sistem operasi melalui
kebijakan hardening yang tepat.

2. Bagi Akademisi menambah literatur mengenai perilaku malware spesifik lokal dan
teknik analisis dinamis.

3. Bagi Pengguna Umum meningkatkan kesadaran akan pentingnya manajemen hak
akses (privilege) untuk mencegah eksekusi malware

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 91

Tinjauan Pustaka
Penelitian Terdahulu

Penelitian oleh Pratama et al. (2022) menunjukkan bahwa redundansi kebijakan
akses pada pengguna di Indonesia memberikan peluang bagi malware berbasis skrip
untuk melakukan bypass pada jendela User Account Control (UAC). Di sisi lain, studi
dari Sari (2023) menekankan bahwa sistem operasi berbasis Linux memiliki tingkat
resistensi yang lebih tinggi terhadap malware lokal bertipe .exe, namun tetap rentan
terhadap skrip shell yang dijalankan dengan hak akses sudo. Tinjauan ini menjadi
landasan bagi peneliti untuk menguji kembali efektivitas proteksi tersebut pada versi
sistem operasi terbaru.

=
Q
=
<
S
§=
R
j
<

Arsitektur Keamanan dan Hirarki Proteksi Sistem Operasi

Sistem operasi modern mengimplementasikan model keamanan berlapis yang
dikenal dengan istilah Protection Rings. Arsitektur ini dirancang untuk memisahkan
instruksi aplikasi pengguna dari instruksi kritis yang dijalankan oleh kernel, sehingga
akses ke sumber daya sistem dapat dikontrol secara ketat.

1. Ring o (Kernel Mode)

Pada lapisan ini, sistem operasi memiliki hak akses penuh terhadap perangkat
keras dan memori. Semua driver serta inti (core) sistem operasi berjalan di tingkat ini,
sehingga setiap instruksi yang dijalankan memiliki kontrol penuh terhadap seluruh
sistem.

2. Ring 3 (User Mode)

Lapisan ini digunakan oleh aplikasi pengguna dan memiliki hak akses yang
terbatas. Keamanan sistem operasi dapat dianggap terkompromi apabila malware
berhasil melakukan Privilege Escalation dari Ring 3 ke Ring 0. Dalam kondisi tersebut,
malware dapat mengendalikan seluruh sistem tanpa terdeteksi oleh perangkat lunak
keamanan yang berjalan di lapisan aplikasi.

Ring 0

(Kernel Mode)

Drivers, 05 Core)

Gambar 1. Marsitectur Space Layalt Rndontion Sistem Run (ASL)

Sebagaimana ditunjukkan pada Gambar 2.1, sistem operasi membagi tingkat akses
sistem ke dalam beberapa lapisan yang disebut protection rings. Setiap lapisan memiliki
hak akses yang berbeda terhadap sumber daya sistem. Ring 0 merupakan tingkat akses
tertinggi yang berjalan dalam Kernel Mode, di mana sistem operasi memiliki kontrol
penuh terhadap perangkat keras, seperti manajemen memori, pengendalian prosesor,
serta operasi input dan output. Lapisan dengan tingkat akses yang lebih rendah

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 92

digunakan oleh aplikasi pengguna (user mode) dan tidak diperkenankan berinteraksi
langsung dengan perangkat keras. Mekanisme pembagian ini bertujuan untuk menjaga
keamanan dan stabilitas sistem dengan membatasi akses aplikasi terhadap sumber daya
kritis.

=
=
=
<
'S
g
&0
=
o

Taksonomi dan Evolusi Malware Lokal
. Malware lokal sering kali dikategorikan sebagai ancaman yang memanfaatkan
kondisi sosiokultural dan teknis di wilayah tertentu. Perbedaan utama antara malware
« global dan lokal terletak pada metode penyebarannya. Malware lokal cenderung lebih
agresif dalam mengeksploitasi fitur-fitur yang umum digunakan di lingkungan
domestik, seperti:
1. Vektor Infeksi USB

Memanfaatkan fitur AutoRun/AutoPlay dan menyembunyikan direktori asli
sambil membuat shortcut palsu dengan nama yang sama.
2. Social Engineering

Menggunakan nama file yang memancing rasa penasaran pengguna (misalnya:
"Data_Gaji_Pegawai.exe") untuk memicu eksekusi manual oleh pengguna.
3. Script-Based Payloads

Penggunaan bahasa skrip seperti VBScript, PowerShell, atau Batch yang diubah
menjadi file .exe guna menghindari kecurigaan sistem terhadap skrip mentah.

Mekanisme Pertahanan Memori

ASLR dan DEP Sistem operasi menggunakan dua teknik utama untuk
menggagalkan eksekusi kode jahat di tingkat memori:
1. Address Space Layout Randomization (ASLR)

Teknik ini secara acak mengatur lokasi alamat memori untuk fungsi-fungsi kunci
sistem operasi. Hal ini menyulitkan malware untuk memprediksi di mana ia harus
menyuntikkan kode berbahaya.

2. Data Execution Prevention (DEP)

Fitur keamanan yang mencegah kode dijalankan dari wilayah memori yang
ditandai hanya untuk data (non-executable). Malware lokal yang mencoba menjalankan
kode melalui buffer overflow sering kali terhenti oleh mekanisme ini.

Teknik Persistensi dan Manipulasi Registry

Salah satu aspek paling kritis dalam analisis malware adalah bagaimana ia
mempertahankan keberadaannya (persistence). Pada sistem operasi Windows, Registry
merupakan basis data konfigurasi yang menjadi target utama. Malware lokal akan
menyisipkan nilai (value) pada kunci tertentu seperti:

Fie — ety

~~~~~~

Gambar 2. Jalur Registry untuk Persistensi Malware

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 93



Dengan memanipulasi kunci ini, malware menjamin dirinya akan dieksekusi
secara otomatis setiap kali sistem operasi melakukan booting, bahkan jika file induk
aslinya telah dihapus sementara dari memori.

ey
2
i=
<
=
g
‘&b
g
o

Analisis Injeksi Proses (Process Hollowing)

Process hollowing adalah teknik tingkat lanjut di mana malware membuat sebuah
proses yang sah (misalnya svchost.exe atau explorer.exe) dalam keadaan tertahan
(suspended). Malware kemudian "mengosongkan" isi memori proses tersebut dan
menggantinya dengan kode jahat miliknya sendiri. Karena sistem melihat proses
tersebut sebagai proses Windows yang asli, aktivitas berbahaya yang dilakukan malware
sering kali luput dari pengawasan Task Manager maupun antivirus berbasis perilaku
sederhana.

Suspended Process

Transacted e
Hollowing g

Process running the
payload

Gambar 3. Mekanisme Injeksi Proses (Process Hollowing)

Metode Penelitian
Design Penelitian dan Pendekatan Analisis

Penelitian ini menerapkan metode Eksperimental Laboratorium dengan fokus
utama pada Analisis Dinamis Perilaku Malware. Pendekatan ini dipilih karena
memungkinkan peneliti untuk mengamati secara langsung instruksi-instruksi yang
dieksekusi oleh malware saat berinteraksi dengan kernel sistem operasi. Berbeda dengan
analisis statis yang hanya membedah kode sumber, analisis dinamis memberikan
gambaran nyata mengenai bagaimana mekanisme pertahanan sistem operasi seperti
User Account Control (UAC) dan Data Execution Prevention (DEP) merespons serangan
secara real-time.

Arsitektur Lingkungan Pengujian (Sandbox)

Untuk mencegah kebocoran data dan infeksi pada infrastruktur jaringan yang
lebih luas, penelitian ini membangun sebuah lingkungan laboratorium virtual yang
terisolasi sepenuhnya (Sandboxing).

1. Lapisan Virtualisasi: Menggunakan Oracle VM VirtualBox dengan fitur Snapshot
aktif. Hal ini memungkinkan sistem untuk dikembalikan ke keadaan bersih (clean
state) dalam hitungan detik setelah setiap skenario pengujian selesai.

2. Sistem Operasi Target (Guest OS): Windows 10 Pro Architecture x64. Versi ini dipilih

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 94



2
=
L=
<
—
<
g
&n
=
@)

karena memiliki basis pengguna terbesar di lingkungan lokal. Konfigurasi keamanan
sengaja disetel pada tingkat default untuk menguji ketangguhan standar sistem
operasi.

3. IsolasiJaringan: Pengaturan kartu jaringan disetel pada mode Internal Network atau
Non-Networked. Langkah ini krusial untuk mencegah malware lokal melakukan
komunikasi ke server luar (Command & Control) atau melakukan pemindaian
terhadap perangkat lain dalam jaringan lokal peneliti.

Artikectiur Malware Analysis Pengtizan

Guest OS
Analysis
Sandbak

Host-Only Adapter

Ubnu OS

Gambar 4. Aeritekctur Eresture Malware SangiBox.

Instrumen dan Perangkat Analisis Forensik
Penelitian ini menggunakan kombinasi berbagai alat analisis forensik digital kelas
profesional untuk membedah setiap pergerakan malware:

1. Process Monitor (ProcMon v3.9): Digunakan sebagai instrumen utama untuk
menangkap jutaan aktivitas sistem secara mendalam, termasuk akses ke file sistem,
pemanggilan fungsi API, dan manipulasi thread proses.

2. Regshot 2.0: Digunakan untuk melakukan perbandingan binari terhadap basis data
Registry. Alat ini mengambil snapshot sebelum infeksi (Pre-Infection) dan sesudah
infeksi (Post-Infection) untuk mengidentifikasi kunci-kunci permanen yang dibuat
oleh malware.

3. Process Explorer (Sysinternals): Untuk memvisualisasikan hirarki proses. Alat ini
sangat berguna untuk mendeteksi Process Hollowing dengan melihat adanya
ketidaksesuaian antara image yang berjalan di memori dengan file asli di disk.

4. Wireshark: Meskipun dalam lingkungan terisolasi, Wireshark tetap digunakan untuk
memantau paket data yang mencoba keluar melalui protokol TCP/UDP sebagai
bagian dari analisis aktivitas payload malware.

Prosedur Pelaksanaan Pengujian
Prosedur penelitian dibagi menjadi empat fase sistematis guna menjamin validitas

data:

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 95



GAMBAR 3.2: DIAGRAM ALIR PROSEDUR PENGUJIAN MALWARE

e
2
=
<
—
s
=
50
i
@)

BASELINE RECORDING

=
v

- = =S
CONTROLED EXECUTION

®06 0

STANDARD USER

I (ALAT MONITORING
I — itor

BEHAVIORAL CAPTURE

Ei-m—"
——'—

v

SYSTEM RESTORATION

&

Gambar 5. Diagram Alir Prosedur Pengujian Malware.

1. Fase 1: Baseline Recording

Fase ini dilakukan pencatatan kondisi awal sistem operasi sebelum terpapar
malware. Parameter yang diamati meliputi penggunaan CPU, memori (RAM), serta
kondisi registry. Data yang diperoleh digunakan sebagai pembanding untuk
menganalisis perubahan sistem setelah eksekusi malware.
2. Fase 2: Controlled Execution

Fase ini melibatkan eksekusi sampel malware dalam dua skenario hak akses, yaitu
menggunakan hak akses Standard User dan hak akses Administrator. Pengujian ini
bertujuan untuk mengevaluasi efektivitas mekanisme Privilege Escalation yang
diterapkan pada sistem operasi.
3. Fase 3: Behavioral Capture

Selama malware dijalankan, aktivitas sistem dipantau secara real-time
menggunakan alat monitoring. Pada fase ini direkam setiap upaya malware dalam
memodifikasi direktori sensitif, seperti C:\Windows\System32 dan
C:\Users\AppData\Roaming. Selain itu, diamati pula respons sistem operasi terhadap
aktivitas tersebut, termasuk kemunculan peringatan keamanan.
4. Fase 4: System Restoration

Setelah seluruh data pengujian terkumpul, sistem dikembalikan ke kondisi awal
menggunakan fitur Revert Snapshot. Langkah ini dilakukan untuk memastikan tidak
terdapat residu malware yang dapat memengaruhi proses pengujian berikutnya.

Teknik Analisis dan Validasi Data
Data yang dihasilkan dari proses pengujian berupa log aktivitas dalam format

(.pml dan .csv) dianalisis menggunakan metode komparatif. Proses analisis dilakukan
dengan membandingkan pola perilaku malware yang teridentifikasi pada sistem lokal
dengan matriks serangan MITRE ATT&CK. Tujuan dari tahap ini adalah untuk
mengklasifikasikan teknik serangan yang digunakan malware, apakah termasuk ke
dalam kategori Persistence, Privilege Escalation, atau Defense Evasion. Hasil analisis
selanjutnya disajikan dalam bentuk tabel yang menggambarkan tingkat keberhasilan

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 96



malware dalam melakukan penetrasi terhadap sistem operasi.

=
52
1=
<
S
g
&0
=
o

Hasil dan Pembahasan
Analisis Komprehensif Aktivitas Malware pada File System dan Registry
Melalui pengujian dinamis menggunakan instrumen Process Monitor (ProcMon),
peneliti berhasil merekam ribuan aktivitas API call yang dilakukan oleh sampel malware
lokal dalam hitungan detik setelah eksekusi. Temuan ini menunjukkan bahwa malware
bekerja secara cepat dan agresif untuk memperoleh kendali atas sistem sebelum
mekanisme keamanan, seperti antivirus, sempat melakukan pemindaian secara
menyeluruh. Berdasarkan hasil analisis, aktivitas malware pada sistem dapat
dikelompokkan ke dalam dua pola utama, yaitu manipulasi file system dan
penyalahgunaan registry.

Manipulasi Atribut File dan Shadow Copy

Malware tidak hanya melakukan replikasi diri, tetapi juga menerapkan
mekanisme perlindungan diri (self-protection). Sampel malware terdeteksi
menyuntikkan salinan kode ke dalam direktori C:\Users[User]\AppData\Roaming
dan mengubah atribut file menjadi system, hidden, dan read-only. Selain itu,
malware berupaya menghapus Volume Shadow Copy sistem guna mencegah
pengguna melakukan pemulihan sistem (system restore) setelah infeksi terjadi.

Pengambilalihan Registry Tingkat Lanjut (Deep Registry Hijacking)

Hasil analisis komparatif menggunakan Regshot menunjukkan bahwa malware
melakukan modifikasi pada registry key kritis yang umumnya tidak diperhatikan oleh
pengguna awam. Salah satu lokasi yang terpengaruh adalah
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Sy
stem. Pada bagian ini, malware mengubah nilai konfigurasi tertentu sehingga fitur
bawaan Windows, seperti Registry Editor dan Task Manager, menjadi tidak dapat
diakses. Kondisi tersebut secara efektif menghambat pengguna dalam melakukan
analisis maupun penghentian proses malware secara manual.

Analisis Komparatif Dampak Berdasarkan Hak Akses (Privilege Analysis)
Penelitian ini secara mendalam mengevaluasi bagaimana fitur User Account

Control (UAC) berinteraksi dengan serangan malware. Data yang diperoleh melalui

simulasi menunjukkan perbedaan eksponensial dalam tingkat kerusakan sistem:

Tabel 1. Perbandingan Dampak Eksekusi Malware Berdasarkan Tingkat Hak Akses

Pengguna
Parameter Evaluasi Skenario Standard User  Skenario Administrator
(Limited) Privilege
Kerberhasilan Hanya pada level akun ~ Berhasil menginfeksi
Persistensi user local. seluruh  seluruh  user
(Global).
Injeksi Direktori Sistem  Diblokir oleh NTFS Sukse memodifikasi
permissions . system 32 dan Diveres.

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 97



Modifikasi Host File Gagal; akses ditolak oleh Sukses ; mengalih trafik
system. ke server jahat.
Gagal karena kurangnya Mampu
izin system.

o
=
L=
<
—
s
=
B
iz
o

Bedah Teknis Memori: Process Hollowing

Salah satu temuan paling krusial dalam penelitian ini adalah efektivitas teknik
Process Hollowing yang digunakan oleh varian malware lokal terbaru terhadap proses
svchost.exe. Berdasarkan hasil analisis menggunakan Process Explorer dan x64dbg,
ditemukan adanya anomali pada Virtual Address Space yang mengindikasikan
terjadinya manipulasi memori pada proses yang sah. Tahapan teknik Process Hollowing
yang teridentifikasi dapat dijelaskan sebagai berikut:
1. Analisis Unmapping

Pada tahap ini, malware memanggil API NtUnmapViewOfSection untuk
mengosongkan ruang memori dari proses legal yang menjadi target. Tujuan dari langkah
ini adalah menghilangkan kode asli proses tanpa menghentikan eksekusi proses tersebut
secara langsung.
2. Injeksi Payload

Setelah ruang memori dikosongkan, malware menggunakan API
WriteProcessMemory untuk menyisipkan kode berbahaya ke dalam proses target.
Payload yang dimasukkan telah dikompilasi ulang dan disesuaikan dengan alamat
memori proses target agar dapat dieksekusi dengan benar.
3. Thread Hijacking

Pada tahap akhir, malware memanggil API SetThreadContext untuk memodifikasi
konteks thread yang aktif. Pada tahap ini, instruction pointer diarahkan ke kode
berbahaya yang telah disuntikkan, sehingga alur eksekusi proses selanjutnya
sepenuhnya berada di bawah kendali malware.

Evaluasi Respon Pertahanan Proaktif dan Heuristik

Penelitian ini juga menguji ketangguhan Windows Defender dalam mendeteksi
sampel malware yang telah mengalami proses obfuscation. Hasil pengujian
menunjukkan bahwa teknik penyamaran masih efektif dalam menghindari mekanisme
deteksi awal.

1. Static Bypass

Sampel malware yang menggunakan metode kompresi kustom terbukti mampu
melewati pemindaian berbasis tanda tangan (signature-based scan) dengan tingkat
keberhasilan mencapai 80%. Temuan ini mengindikasikan bahwa modifikasi struktur
biner malware dapat secara signifikan menurunkan efektivitas deteksi statis.
2. Dynamic/Behavioral Detection

Mekanisme deteksi berbasis perilaku mulai memberikan respons ketika malware
melakukan serangkaian aktivitas mencurigakan secara berurutan, seperti modifikasi
registry yang diikuti oleh pembentukan koneksi jaringan. Namun, dalam sebagian besar
kasus, peringatan keamanan muncul setelah malware berhasil membangun mekanisme
persistensi. Kondisi ini menunjukkan bahwa sistem telah berada dalam keadaan
terkompromi (compromised) sebelum respons pertahanan diaktifkan.

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 98



Kelemahan Struktural dan Rekomendasi Strategis

Kegagalan sistem dalam menahan serangan malware lokal tidak disebabkan oleh
satu faktor tunggal, melainkan merupakan kombinasi antara kerentanan teknis dan
kesalahan konfigurasi. Beberapa faktor yang berperan dalam hal ini antara lain:

1. Trust-Based Vulnerability

Sistem operasi secara default memberikan tingkat kepercayaan tinggi terhadap
proses-proses yang ditandatangani secara digital oleh Microsoft. Mekanisme ini justru
dimanfaatkan oleh malware untuk menyembunyikan aktivitasnya, sehingga
mempersulit deteksi oleh sistem keamanan.

2. UAC Over-Reliance
Pengguna sering kali mengabaikan peringatan dari User Account Control (UAC),

misalnya dengan mengklik “Yes” tanpa membaca pesan peringatan secara seksama.
Kebiasaan ini menciptakan titik lemah psikologis yang dapat dieksploitasi oleh malware
untuk memperoleh hak akses yang lebih tinggi (privilege escalation).

=
=
=
<
'S
8
)
=
o

Kesimpulan

Berdasarkan serangkaian pengujian dinamis dan analisis teknis yang telah
dilakukan, dapat disimpulkan bahwa keamanan sistem operasi modern terhadap
ancaman malware lokal sangat bergantung pada konfigurasi hak akses dan perilaku
pengguna. Meskipun arsitektur sistem telah dilengkapi dengan mekanisme
perlindungan memori tingkat tinggi, seperti ASLR (Address Space Layout
Randomization) dan DEP (Data Execution Prevention), malware lokal tetap mampu
mengkompromikan sistem dengan memanfaatkan teknik Process Hollowing, yang
memungkinkan kode berbahaya dijalankan melalui proses legal tanpa terdeteksi oleh
pemindaian berbasis tanda tangan.

Hasil pengujian menunjukkan bahwa hak akses administrator merupakan faktor
kunci dalam keberhasilan infeksi sistemik. Sistem yang dijalankan dengan hak akses
penuh memungkinkan malware melumpuhkan pertahanan internal, memodifikasi
registry secara permanen, serta mengganggu jalur pembaruan keamanan. Dengan
demikian, meskipun mekanisme pertahanan teknis telah diterapkan, celah signifikan
tetap ada, terutama yang berkaitan dengan manipulasi psikologis pengguna dan teknik
persistensi yang memanfaatkan fungsi sah dari sistem operasi. Temuan ini menegaskan
pentingnya pendekatan keamanan berlapis, yang mencakup konfigurasi hak akses yang
tepat, edukasi pengguna, serta peningkatan deteksi berbasis perilaku.

Saran

Sebagai langkah mitigasi untuk memperkuat pertahanan sistem di masa
mendatang, sangat disarankan bagi pengguna untuk menerapkan prinsip Least Privilege
dengan menggunakan akun standar dalam aktivitas operasional sehari-hari, sehingga
ruang gerak malware dapat dibatasi. Pihak administrator sistem perlu
mengimplementasikan kebijakan pembatasan aplikasi yang lebih ketat, seperti
penggunaan AppLocker atau Application Control, untuk memverifikasi keabsahan setiap
file eksekusi sebelum diizinkan berjalan di lingkungan sistem. Selain itu, bagi
pengembang perangkat lunak keamanan dan peneliti selanjutnya, diperlukan
pengembangan metode deteksi berbasis perilaku (heuristic detection) yang lebih
proaktif, serta penerapan pemantauan integritas registry secara real-time untuk
mengantisipasi tren fileless malware. Edukasi mengenai keamanan siber tetap menjadi

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 99



komponen penting yang tidak terpisahkan dari solusi teknis, guna meminimalisir risiko
serangan berbasis social engineering yang sering menjadi pintu masuk utama malware
lokal.

=
=
=
<
S
g
)
=
o

Daftar Pustaka

Abadi, M., & Kurniawan, D. (2022). Analisis Keamanan Sistem Operasi terhadap
Serangan Malware pada Lingkungan Virtual. Jurnal Teknologi Informasi dan Ilmu
Komputer, 9(3), 455-462.

Microsoft Corporation. (2023). Windows Security Internals: Understanding Ring
Protection and User Account Control. Microsoft Press.

Pratama, A. R., & Sari, I. P. (2021). Efektivitas Teknik Process Hollowing dalam
EvasionAntivirus pada Sistem Operasi Windows 10. Jurnal Forensik Digital
Indonesia, 4(1), 12-25.

Rusli, M. (2023). Evolusi Malware Lokal: Teknik Persistensi dan Metode Penyebaran
melalui Media Penyimpanan Eksternal. Jakarta: Penerbit Informatika.

Sikorski, M., & Honig, A. (2012). Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press.

Sysinternals. (2024). Process Monitor and Process Explorer: Official Documentation.
Microsoft Learn. [Online]

Yusuf, M. (2022). Implementasi Metode Sandboxing untuk Analisis Dinamis Malware
Lokal. Jurnal Sistem Informasi dan Keamanan Siber, 5(2), 88-101.

Received: November 8, 2025 - Revised: November 23, 2025 - Accepted: Desember 11, 2025 - Published online:
January 7, 2026 Page 100



